
 

 

  

 
 

Università degli Studi di Genova 

DISEFIN – Series of Economic Working Papers 

16126  Genova – via vivaldi 5  – Fax +39 010 209 5223 

 

 
 

 
 
 
 

A Multivariate Analysis Of The Space Syntax Out-

put For The Definition Of Strata In Street Security 
Surveys 

 
Enrico di Bella, Luca Persico, Matteo Corsi 

 

 

 

 

 

 

 

wp n. 5 

September 2011  



 

 2 

“DISEFIN Working Papers on line” 
series of economic working papers 

published online by 

 
Research Doctorate in  

Public Economics 

Ph.D School in New technologies and Social Sciences 

University of Genoa 

 
Founder: 

Amedeo Fossati 
 

Editor-in-Chief: 
Marcello Montefiori 

 
Editorial Board: 
Paul De Grawe 

Francesco Figari 
Amedeo Fossati  
Luca Gandullia  
Eric Gaspérini  

Andrea Monticini  
Carlo Perroni 

 

 

 

 

 

Web site: 
http://www.disefin.unige.it/ 



 

 

A Multivariate Analysis Of The Space Syntax Output For The 

Definition Of Strata In Street Security Surveys 
 

Enrico di Bella 

University of Genoa, 

Italy 

Luca Persico 

University of Genoa, 

Italy 

Matteo Corsi 

Ass. Kallipolis Trieste, 

Italy 

 
Abstract 

Although the connection between crime and urban layout is generally evident, 
surveys inquiring that relationship are often facing two different problems: areas 
with high criminality are often inhabited by partially elusive populations (being 
stowaways) and the urban structure (e.g. length and width of streets) quickly 
changes even after a few corners. In this work a combination of two techniques well 
known in their specific field is proposed to define a simple two-stages sampling de-
sign. Space Syntax is a set of measurements which are done on the topographic 
maps of a town with the division of all the roads into  segments, called axes. Using 
multivariate techniques, these axes can be classified on the basis of a homogeneity 
criterion obtaining the strata for a two-stages sampling design. 

 

Keywords: Factor Analysis, Geodetic networks, Street security surveys, Space 
Syntax, Urban axes 
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1. Introduction 
In the last 20 years, most European cities have undergone 

vigorous renovation programmes aimed substantially (when not 
exclusively) at increasing safety and bolstering crime prevention. 
Official acts of the EU have been reflecting this tendency at least 
since 1994, with the inauguration of the “URBAN I” Programme. 
A debate on the role of urban planning on crime and crime 
prevention, however, dates back at least to the 1950s and 1960s 
when large urban renewal projects were put in place in the United 
States and their consequences spurred the well know and very in-
fluential argument between New York City planner Robert Moses 
and American/Canadian urbanist Jane Jacobs (Jacobs, 1961). 

Such an effort reflects the fact that, despite the vast number 
of conflicting theories on the causes of crime, there is widespread 
consensus on the idea that crime is a mostly urban phenomenon 
(Durkheim, 1897 and Weber, 1958)  and that its roots have to be 
looked for somewhere in between the social structure of urban 
communities and the structure of the built environment they inhab-
it. 

Each of the main international organizations that in some 
form deal with the subject of crime (from the World Bank to differ-
ent branches of the UN galaxy) have specific workgroups, pro-
grammes, projects and offices dedicated to urban crime, creating a 
framework that is intended to give an impulse to urban crime-
prevention research and policies.  Most notably, UNODC (United 
Nations Office on Drugs and Crime), whose “Commission on 
Crime Prevention and Criminal Justice” has urban crime among its 
mandated priority areas, UN-Habitat (United Nations Human Set-
tlements Program) throughout its “Safer Cities Programme” and 
several country projects of the World Bank (in particular in Latin 
America). 

Accordingly, “Aménagement urbain et sureté: les issues de 
deux cas italiens et l'étude d'un nouveau modèle d'analyse orienté à 
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l'action” is a project funded by Plan Urbanisme Construction Ar-
chitecture, an interdepartmental body of the French Republic, via 
an international research programme on urban safety. The project is 
designed to investigate, in five circumscribed areas of two major 
Italian cities, the existing correlations between urban form, pedes-
trian movement and safety, in an attempt to estimate the impact of 
urban spatial configuration on natural surveillance (Jacobs, 1961) 
and, in turn, that of natural surveillance on actual crime figures. 

This goal will be pursued by comparing and complementing 
the mentioned impacts with more traditional measures of urban 
liveability and safety. 

The expected outcome of the research is a non-contextual 
model of urban analysis that allows researchers and governmental 
authorities to plan renovation programmes consisting of a rational 
and motivated combination of welfare/community development, 
crime prevention through environmental design and spatial and 
configuration/natural surveillance management as a bridge between 
them. 

Three are the main elements that the project assumes as 
measurable: the victimization rate at street level through victimiza-
tion surveys, the pedestrian flow at street level through on-site pe-
destrian count, and the configurational properties of the urban grid 
through Space Syntax Analysis. In fact, each element is measured 
at more than a street level, as the actual unit of measurement is the 
"axial line", a space syntax analysis concept that is introduced in 
the next paragraph and that frequently covers a scale smaller than 
the whole street.  

Because of the variety and wideness of the various topics 
involved in this project, in this paper the authors will focus exclu-
sively on the usage of the Space Syntax Analysis output to define a 
sampling design that will be used to set up crime victimization sur-
veys.  
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2. The space syntax analysis 
Space Syntax Analysis is a technique that measures the con-

figurational properties of an urban grid through the methodological 
features of graph theory (Hillier & Hanson, 1984). In graph theory, 
a graph G is a network consisting of two sets of information: a set 
of nodes, N = {n1, n2, … nN} and a set of lines L = {l1, l2, … lL}, 
each connecting two nodes. As a consequence, in an undirected 
graph, each line can be unambiguously identified by the unordered 
pair of distinct nodes that it connects, therefore: 

 
 lk = (ni, nj) = (nj, ni) (1) 

 
The urban layout of a city and, specifically, its system of 

roads and public spaces intertwining the buildings, can be thought 
as a non directional network.  

That network can be represented as a graph and then ana-
lyzed  either adopting the standard operations of graph theory or 
formulating new ones, specifically designed to analyze space and 
human behaviour in space. 

The formal representation of an urban layout through a 
graph is done by re-drawing a bi-dimensional urban grid as an axial 
map, a network consisting of the fewest, longest straight walkable 
lines (axial lines) that cover the whole grid, and their intersections 
(Figure 1). The axial map is then analyzed as a graph where, coun-
ter intuitively, each axial line is assumed as a node or vertex of the 
graph and each intersection between two axial lines as an edge of 
the graph.  

In Graph Theory, nodes represent actors and lines represent 
ties between the actors (Wasserman an Faust, 1994). In Space Syn-
tax, spaces are the actors and intersections are their ties. 

Since a graph is, by default, the way to represent mathemat-
ically an axial map, it goes without saying that, from this point on, 
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"node" and "axial line" are going to be used somewhat inter-
changeably. Figure 2 shows the relationship between an axial map 
and its corresponding graph. 

With this procedure, Space Syntax Analysis describes in 
measurable terms the empty spaces of a map and their configura-
tion. However, a topological description of the empty spaces of a 
map is, by definition, one that ignores some of their measurable 
features, like their linear length and metric properties, in favour of 
providing a syntax for expressing their position in a way that is not 
sensitive to continuous deformations. 

The reason for expressing positions and describing space 
using this approach was the one of exposing the limited number of 
actual models of space configurations that can be found in human 
settlements when continuous deformations are not considered, ex-
plicating the social and cultural implications of those models. 

In that form, Space Syntax was initially conceived by Prof. 
Bill Hillier and Julienne Hanson at The Bartlett, University College 
of London, in  
 

FIGURE 1. – Axial map overlapping the cartographic map. 
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the 1970s and in the 1980s, as a theory to analyze small envi-
ronments and their configurational features. The theory received 
substantial impulse by the increase in the computational capacity of 
computers that allowed its use on larger graphs and made it possi-
ble to experimentally test it on reasonably vast built environments 
(Cities as vast as London and Atlanta have been represented 
through axial maps and can be analyzed with the appropriate soft-
ware and thanks to up-to-date hardware in a few seconds of compu-
tation time). The implications of Space Syntax Analysis, however, 
became even more impressive when a substantial relation was 
found between individual behaviour in space, cognition of space 
and movement through it, and the configuration of space expressed 
in topological terms. Since then, space syntax has been studied as 
an increasingly convincing predictor of pedestrian movement.     

 
 

FIGURE 2. – Axial map (a) and its corresponding graph (b) 

 
 
 

3.Measures in space syntax analysis 
Most of the measures provided by Space Syntax Analysis 

represent either a way to express the degree to which a node is 
connected to its immediate surroundings or its centrality with re-
spect of the whole graph or part of it. Table 1 summarizes the 
Space Syntax measures analyzed and used in this work. 

Connectedness is usually referred to a node and the nodes it 
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is directly linked to through a vertex. This makes it (and each of the 
different ways to measure it) a local information, i.e. an infor-
mation regarding specific parts of the graph. 

Centrality extends its meaning beyond direct connections 
and largely depends on a definition of distance that is peculiar to 
Graph Theory. Length is not intended as linear length, but as a 
count of the intermediate nodes that stand on the shortest path be-
tween i and j. Consequently, different measures of centrality can 
express local or global information. 

A measure of centrality can easily be affected by the global 
size of the system and, therefore, two measures of centrality regard-
ing two different graphs may not be comparable if the two graphs 
are different in size. Because of that, various measures of centrality 
for a node are normalized in some way and the procedure that will 
be followed throughout this paper is that of the D-Value (Kruger, 
1989). Normalization through the D-Value is obtained comparing a 
centrality measure of the i-th node of a graph with n nodes with the 
centrality measure we would get if the node was at the root of a dif-
ferent graph, again consisting of n nodes but standardised in a dia-
mond shape. According to (Kruger, 1989; Teklenburg et al. 1993 
and Hillier and Hanson, 1983), a diamond-shaped graph is a partic-
ular form of justified graph in which a node (the root) is put at the 
base and then all nodes at depth 1 are aligned horizontally above it, 
all nodes at depth 2 from the root are aligned above those at depth 1 
and so on until all levels of depth are accounted for. In a diamond 
shape there are k nodes at mean depth level, k/2 nodes at one level 
above and below and k/4 at two levels above and below up to the 
point where we have a single node at the deepest level and one at 
the shallowest (the root itself). In such a graph, the depths from a 
root are, approximately, normally distributed (Kruger, 1989; Hillier 
and Hanson, 1983); therefore, comparing the RA value of its root 
to that of a node in a graph with the same number of nodes is a way 
to compare a normal distribution with the actual distribution. In 
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such a graph it is possible to demonstrate (Hillier and Hanson, 
1983)  that the D-Value is: 
 

 2
2

2 log 1 1
3

( 1)( 2)n

n
n

D
n n

  +  
− +   

    =
− −

 
(2) 

 
being n the number of nodes in the axial map. 

 
 

TABLE 1A. – Formulas, meanings and descriptions of the space syntax output 
variables used in the subsequent analyses (continues). 

Variable Formula, meaning and description of the variable 

Connectivity 

Ci = ki 
Number of axes connected 
to the i-th axis. 

Measures how much an axis is directly connected to the others.  
Axes with high Ci  make it easier to pass through the areas. 

Control 

1

1
=

=∑
ki

i j
j

CTRL
C

 
Sum of the inverse values 
of Ci for the ki axes con-
nected to the i-th axis. 

Strategic relevance of an axis as the main or only connection to the 
whole system for the constellation of axes directly linked to it. 
CTRLi is maximized  if the axis is connected only with dead ends. 

Controlla-

bility 
1

i
i

k
AB

w
=

+
 

Ratio between connectivity 
and the w + 1 axes at a dis-
tance dij ≤ 2. 

High values indicate axes that are easy to dominate (visually, for 
example) from a nearby vantage point.  

Mean Depth 
 

1

1

1
,

1

−

=
= ≠

−
∑

n
i ijj

MD d i j
n

 
M distance of the i-th axis 
from all the other n – 1. 

Basic centrality measure: it accounts for the distance between each 
axis and all the others, with the shallowest axis being the closest to 
all the others and the deepest being the farthest one. In a city with a 
perfectly circular axial map, the shallowest axis would be close to 
the centre and the deepest would be on the perimeter. 
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TABLE 1B. – Formulas, meanings and descriptions of the space syntax output 
variables used in the subsequent analyses (continued). 

Variable Formula, meaning and description of the variable 

Mean Depth 

R2 

1
2 1

1
,

1

−

=
= ≠

−
∑

w
R i ijj

MD d i j
w

 
Average distance of the i-
th axis from the other w – 1 
axes at a distance dij ≤ 2. 

The meaning is the same as above, but those properties are re-
ferred to just a part of the axial map, the one standing at a topo-
logical distance of 2 o less from the examined axis. 

Relative 

Asymmetry 

2( 1)

2
i

i
MD

RA
n

−
=

−
 

Normalized value of MDi 

being min(MDi) =1 and 
Max(MDi) = n/2. 

RA expresses the centrality of an axis comparing its actual Mean 
Depth with the theoretical highest and lowest values that Mean 
Depth could have in the given graph. Compared to Mean Depth 
alone, Relativized Asymmetry is a normalization between 0 and 1. 

Relative 

Asymmetry 

R2 

2
2

2( 1)

2
R i

R i
MD

RA
n

−
=

−
 

Normalized value of R2MDi 
being min(R2MDi) =1 and 
Max(R2MDi) = n/2. 

Same as RAi, but focused on the local structure of the axial map 
since Mean Depth is replaced with Mean Depth R2. 

Real  

Relativized 
Asymmetry 

i
i

i

RA
RRA

D
=  

Measurement of RAi rela-
tively to Di. If RRAi = 1the 
graph is “diamond”. 

RRA is a normalized measure since it is calculated as RA normal-
ized through the D-Value. This makes RRA a centrality measure 
that is independent from the size of the graph, and RRA values 
from different graphs are hence comparable. 

Real  

Relativized 

Asymmetry 

R2 

2
2 = R i

R i
i

RA
RRA

D
 

Measurement of RAi rela-
tively to Di. If RRAi = 1 the 
graph is a “diamond”. 

Again, same as above, but within the perimeter of the axes at a 
topological distance of 2 or less from the axis we are analyzing 
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TABLE 1C. – Formulas, meanings and descriptions of the space syntax output 
variables used in the subsequent analyses (continued). 

Variable Formula, meaning and description of the variable 

Integration 

1 i
i

i i

D
INT

RRA RA
= =  Inverse of iRRA . 

Standard global measure of centrality to be used with RRA. High 
levels of Integration define the small areas, close to the geomet-
ric centre of the axial map, made of both long and short axes.  

Integration  
R2 

2
2 2

1 i
R i

R i R i

D
INT

RRA RA
= =  Inverse of 2R iRRA . 

Centrality measure for axes at a distance of 2 or less from the i-
th. 

Choice 

( ),

,

σ

σ
=

s t

i

s t

i
C  

Geodetic paths between 
each couple of nodes 
going through (i) over 
total paths. 

Global measure of centrality (see INTi) done on highly hierar-
chical measurements, with most axes having very low values and 
few of them, long axes that constitute the backbone of the urban 
fabric, with values much higher than the average. 

Choice R2 

( ),
2

,

, 2, 2
σ

σ
= ∀ ∃ ≤ ≤

s t

R i si ti

s t

i
C s t d d  

Like Choice, but with 
each node of the (s,t) 
couples at distance 2 or 
less from (i). 

As usual with R2 values, Choice R2 has the same meaning as 
Choice, but it only refers to a part of the city that stands within 2 
steps of topological distance from the axis we are analyzing. 

Node Count 
R2 

ni 
Number of nodes at dij ≤ 
2 connected to the i-th 
axis. 

Local measure of connection for an axis. 

Length 
li 

Metric length of the i-th 
axis. 

The length of an axis is a measure of its role inside the map. 
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4. The sampling design and axes grouping 

Sampling techniques are very numerous and differ from one 
another according to the applicatory contexts and the information 
available before the survey. Sampling requires a not necessarily 
nominative list of all the units in the population. In the present sur-
vey a partially difficult-to-sample population has to be faced as an 
exhaustive and accurate list of the units to be sampled does not ex-
ists. Although it is not possible to suppose a relevant number of 
homeless, in the areas analyzed (Porta Palazzo and Lingotto in Tu-
rin) the electoral list of voters is not a complete list of the residents 
as there is a relevant percentage of people living in the area but not 
therein officially resident or being illegal immigrant. For this rea-
son the “classical” stratified sampling methodology based on gen-
der and age classes can’t be easily applied and the use of a multi-
phase sampling is suggested. 

Moreover, the topic of the study is the definition of the rela-
tionship between the perception of safety that resident have and the 
urban characteristics or the axis in which they are living and, there-
fore, the focus should be on the structure of axes more than the 
composition of residents in the axes. The procedure applied, in-
spired by, but not exactly, an areal sampling, is defined through a 
few steps: 
 

1. generation of the axes decomposition of the urban layout ac-
cording to the space syntax approach and measurement of the 
space syntax variables specified in paragraph 3; 

2. factorial analysis to resume the space syntax output variable 
into a few factors with an urban meaning;  

3. clustering the axes using the two factors found in step 2 using 
a k-means approach obtaining the fist-stage units for the sam-
pling; 
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4. definition of the number of axes to be sampled in the clusters 
identified proportionally to the population living in those axes 
over the total; 

5. random selection of one building per sampled axis; 
6. preliminary analysis and eventual integration of the first sam-

ple according to strata variances estimates. 
 

The definition of cohesive subgroups (subsets of actors 
among whom there are relatively strong, direct, intense, frequent or 
positive ties) is quite common in the Social Networks Analysis 
(Wasserman an Faust, 1994). Many authors have discussed the role 
of social cohesion in social explanations and theories (Burt, 1984; 
Collins 1988; Erickson 1988; Friedkin 1984) but the literature 
about cohesive groups in geodetic networks is quite poor. Obvious-
ly the measurements used by the various authors to define cohesive 
subgroups are various but the methodologies used to create the 
clusters of actors in the network represent proximities among them 
are the classical statistical multivariate techniques: Principal Com-
ponents and Factor Analysis (e.g. Bock and Husain, 1952; MacRae, 
1960; Wright and Evitts, 1961), Multidimensional Scaling (e.g. 
Laumann and Pappi, 1973; Freeman, Romney and Freeman, 1987; 
Arabie 1977; Caldeira 1988), Clustering Techniques (Wille, 1984). 
In this work the Multidimensional Approach is not taken into ac-
count as Factor Analysis gave good results with a clear interpreta-
tion of the factors. Future works could analyze the effectiveness of 
the two different approaches. 

 
4.1 Principal Components Analysis 

Given a set of data, principal components analysis looks for 
a few linear combinations that can be used to summarize the data, 
losing in the process as little information as possible. As a first ob-
jective, principal component analysis seeks the Standardized Linear 
Combination of the original variables that has maximal variance. 
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If x is a random vector with mean µµµµ and covariance matrix 
ΣΣΣΣ, then the principal component transformation is given by: 

 
 )(' µxΓyx −=→  (3) 

 
where ΓΓΓΓ is orthogonal, ΓΓΓΓ’ΣΣΣΣΓΓΓΓ = ΛΛΛΛ is diagonal and the eigen-

values λ1 ≥ λ2 ≥ … ≥ λp ≥ 0. The strict positivity of the eigenvalues 
λi is guaranteed if ΣΣΣΣ is positive definite. The representation of ΣΣΣΣ 
follows the Jordan Decomposition Theorem (Mardia et al., 1979, p. 
469). The i-th principal component of x is the i-th element of the 
vector y, namely as  
 

   (4) 
 

where  is the i-th column of ΓΓΓΓ and may be called the i-th 
vector of principal component loadings. The function yi is, then, the 
i-th principal component of x.   

It is easy to prove (Mardia et al, 1979, p. 215) the following 
theorem: 

 
THEOREM 1 (Properties of principal components). 

If  E(x) = µµµµ, Var(x) = ΣΣΣΣ and y is as defined in (3), then: 

1. E(yi) = 0; 
2. Var(yi) = λi; 
3. Cov(yi, yj) = 0, i ≠ j 
4. Var(y1) ≥ Var(y2) ≥ … ≥ Var(yp) ≥ 0 

5. Σtry
p

i i

p

i i ==∑∑ == 11
)(Var λ   
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4.2 Models for Factor Analysis 

The basic idea underlying factor analysis (e.g., Press, 1972) 
is that p observed random variables X, can be expressed, except for 
n error term, as linear functions of m (< p) hypothetical variables or 
common factors, i.e. if x = (x1, x2, …, xp) are the variables and f = 
(f1, f2, …, fm) the factors then: 

 
   (4) 

 
where ΛΛΛΛ is the matrix of the so called factor loadings λij i = 

1, …, p, j = 1, …, m. 
As stated by Joliffe (1986), both Principal Component 

Analysis and Factor Analysis aim to reduce the dimensionality of a 
set of data, but the approaches used to do so are different for the 
two techniques. 

Principal component analysis has been extensively used as 
part of Factor Analysis but there is not any explicit model for the 
former. The Factor Analysis requires six basic assumptions: 

 
1.  E[e] = 0 4.  E[ee’] = ΨΨΨΨ   (diagonal) 
2.  E[f] = 0 5.  E[fe’]=0  (a matrix of zeros) 
3.  E[x] = 0 6.  E[ff]=Im   (an identity matrix) 

 
Whereas assumptions 1-3 are standard and convenient as-

sumptions made in most statistical models without loss of generali-
ty, assumptions 4 and 5 are fundamental. The last assumption can 
be relaxed so that the common factors may be correlated (oblique) 
rather than uncorrelated (orthogonal). Many techniques in factor 
analysis have been developed for finding orthogonal factors, but 
some authors (e.g., Cattell, 1978) argue that oblique factors are al-
most always necessary to get a correct factor structure. Usually the 
assumption of multivariate normality is made but, like in PCA, 
many of the results do not depend on specific distributional as-
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sumptions. Some restrictions are generally necessary on ΛΛΛΛ, because 
without any restrictions there will be a multiplicity of possible ΛΛΛΛ 
which give equally “good” solutions. Because of this indetermina-
cy, estimation of ΛΛΛΛ and ΨΨΨΨ precedes in two stages: 

 
1. some restrictions are placed on ΛΛΛΛ in order to find an initial 

solution (for example through PCA); 
2. other solutions are found by rotation of ΛΛΛΛ multiplying by an 

orthogonal matrix T and the “best” one is chosen according 
to some particular criterion. 

 
Usually, it is not possible to define the best rotation criteri-

on and many of them should be explored but all of them aim to ob-
tain a rotated structure of Λ with most elements “close to zero” or 
“far from zero” with as few as possible elements taking intermedi-
ate values. The great advantage of rotation is that it simplifies the 
factor loadings or rotated PC coefficients, which can help in inter-
preting the factors or rotated PCs. 

As mentioned earlier a major distinction between factor 
analysis and PCA is that there is the model (3) underlying factor 
analysis but no such model in PCA. Both techniques can be 
thought of as trying to represent some aspects of the covariance 
matrix Σ as well as possible, but PCA concentrates on the diagonal 
elements, whereas in the factor analysis the interest is the off-
diagonal elements. Therefore, if a PCA is performed on n inde-
pendent variables, there will be a PC corresponding to each such 
variable whereas a common factor in factor analysis must contrib-
ute to at least two of the variables, so it is not possible to have a 
“single variable” common factor. Thus, for a given dataset, the 
number of factors required for an adequate factor model will be no 
larger, and may be strictly smaller, than the number of PCs re-
quired to account for most variation in the data. 
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Despite of these differences, PCA and factor analysis both 
have the aim of reducing the dimensionality of a vector of random 
variables and the use of PCs to find initial factor loadings, though 
having no firm justification in the theory, will often not be mislead-
ing in practice. 

For all the aforesaid reasons the use of principal compo-
nents analysis and factors rotation in this context is justified and the 
results are reported in the subsequent paragraphs.  
 
4.3   Cluster Analysis 

The term “clustering” includes a collection of techniques 
that are used to group multidimensional entities according to vari-
ous criteria of their degree of homogeneity and heterogeneity. The 
problem of clustering N data vectors in a p-dimensional space into 
k clusters can be handled in many ways (Everitt, 1974) and the 
most appropriate technique to use depends upon the problem. In 
this work we use a Non Hierarchical Clustering (k-means cluster-
ing) which is based upon the criterion of minimization of the vari-
ance within the clusters and which can be thought as an “ANOVA 
in reverse” as the methodology moves objects (e.g., cases) in and 
out of groups (clusters) to get the most significant ANOVA results. 
Usually, as the result of a k-means clustering analysis, we would 
examine the means for each cluster on each dimension to assess 
how distinct our k clusters are. Ideally, we would obtain very dif-
ferent means for most, if not all, dimensions used in the analysis. 

 
4.4   Sampling Design 

In most sampling problems the population can be regarded 
as being composed of a set of groups and elements (e.g. Kalton, 
1989, Fabbris, 1989, Diana and Salvan, 1987, Cicchitelli, 1992, 
Gambini, 2009). One sampling use for such groups is to treat them 
as strata so that separate samples are selected from each group. If 
all the elements in the second-stage level are sampled, the method 
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is known as cluster sampling whereas if only a sample of elements 
is taken from each selected cluster, the method is known as two-
stage sampling. Often a hierarchy of clusters is used: first some 
large clusters are selected, next some smaller clusters within the se-
lected large clusters and so on until finally elements are selected 
within the final-stage cluster. The sampling procedure above speci-
fied can be expressed as a multi-stage sampling (or a cluster sam-
pling if all the units in a building are sampled) in which the units 
sampled in the last stage are all the units of the last stage itself: the 
universe is divided into a number of first-stage (or primary sam-
pling) units (axes), which are sampled; then the selected first-stage 
units are sub-divided into a number of smaller second-stage (or 
secondary sampling) units (buildings). The N units of the popula-
tion are divided into H subpopulations (axes groups) and h axes are 
sampled from H,  nj (j = 1, ..., H) buildings are sampled from each 
of the h stages sampled (generally ni ≠ nj  i ≠ j), for a total of n 
units. In particular it is assumed to sample one building per axis. 

Although strata and clusters are both groupings of elements, 
they serve entirely different sampling purposes. Since strata are 
represented in the sample, it is advantageous if they are internally 
homogeneous in the survey variables. On the other hand, with only 
a sample of clusters being sampled, the ones selected need to repre-
sents the ones unselected; this is best done when the clusters are as 
internally heterogeneous in the survey variables as possible. Pro-
portionate stratification is used to achieve gains in precision but, 
generally, cluster sampling leads to a loss in precision compared 
with a simple random sample of the same size. The reasons why in 
this work this procedure is suggested are the following: 
 

1. clustering is generated using objective measurements (alt-
hough, some inconsistencies of Space Syntax have been re-
ported by Ratti, 2004); 
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2. the cluster sampling procedure reduces the cost of the sur-
vey in comparison to the same SRS of the same size; 

3. the list of the units composing the population is not availa-
ble. 

 
An aspect relevant for the analysis of the sample design is 

whether the clusters are equal in size or not. Generally the natural 
groupings that the sampler takes advantage of to serve as clusters 
almost always vary in size, often in a major way. In the following 
the difficulties this variation in size creates will be explained and 
methods by which they can be overcome will be described. 

In general, with a two-stage design, the probability of ele-
ment B in cluster A (A∩B) appearing in the sample is: 
 

 P(A∩B) = P(A)P(B|A)  (5) 
 

where P(A) is the probability of cluster A to be selected and 
P(B|A) the probability of cluster B to be chosen at the second stage, 
given that cluster A was selected at the first stage. This equation, 
which can be extended to cover more sampling stages when neces-
sary, is sometimes known as the selection equation. Consequently, 
if the selection of first-stage and second-stage clusters are purely 
random, probability (4) is strictly connected to the number of units 
in the clusters. Moreover, if all the units are equally relevant for the 
survey, the probability of selection of one cluster is supposed to be 
proportional to cluster size.  

In practice, this “Probability proportional to size” sampling 
as described is seldom possible, because the true sizes of the sam-
pling units are usually unknown. Often, however, good estimates 
are available from a recent census or some other source. For exam-
ple, it is possible, from Local Administration data, to have the list 
of the regular residents in the areas of interest. Illegal immigrants 
and, more generally, elusive units can be assumed to be equally 
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distributed in the areas analyzed as they are very limited in surface 
and number of axes. 

 
5. The Turin case 

Turin (Torino) with almost one million inhabitants is the 
forth Italian city after Rome, Milan and Naples. Founded as a Ro-
man military camp (Castra Taurinorum) in the first century BC, 
the city developed respecting the typical Roman street grid core as 
it can still be seen in the modern city.  

The two areas of interest Porta Palazzo (PP) and Lingotto 
(LI) are topologically extremely different (Figure 3). The “Porta 
Palazzo” quarter takes its name from the homonymous city gate 
which had been built in 1701 in the northern part of Turin. This ar-
ea, initially a suburban area outside the city walls, became an inte-
grant part of Turin in 1800 as a decision of Napoleon. In the subse-
quent years it became a commercially relevant quarter with an im-
portant market (today in this quarter the biggest not covered Euro-
pean market takes place) and a generalized overpopulation (actual-
ly approx. fifteen thousand residents) due to massive immigration 
from southern Italy and non-EU countries with the successive ur-
ban decay. In recent years, and in particular after 1996, a strong 
requalification process is taking place in the area in the framework 
of the “The Gate-living not leaving” project financed by the Euro-
pean Union and various national institutions. The “Lingotto” quar-
ter takes its name from the biggest farm active in this area when it 
was a rural burg. When, in 1915, Fiat decided to establish a factory 
in this area the urban growth of this area dramatically boosted mak-
ing of Lingotto a big and highly populated working-class quarter 
(approx. fifty thousand residents). Nowadays, the Porta Palazzo 
and Lingotto areas count respectively 17.715 and 20.359 inhabit-
ants (resident people). The demographic composition of the two 
populations, as we can see in Table 2 and Table 3, presents some 
specific features. Porta Palazzo area is characterised by an higher 
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percentage of not Italian residents corresponding to about 33% of 
the total population (Lingotto presents only 10% of not Italian resi-
dents). The age distribution is instead very similar in the two areas, 
about the 70% of the total residents are sixty or less. As it can be 
seen in Figure 3, the different percentage of people coming from 
non-UE countries between the two areas, determines a highly dif-
ferent population structure. In particular, the different percentage 
distribution between the two area of interest is due to the presence, 
in the Porta Palazzo area, of an high percentage of resident coming 
from non UE countries, mainly masculine and belonging to 30 – 50 
age class. The tendency of Italian population ageing is confirmed. 
This process is softened, in the Porta Palazzo area, by the presence 
of non UE resident (see Figure 4).  

 
FIGURE 3. – Lingotto (left) and Porta Palazzo(right) areas. 

        
 

TABLE 2 – Demographic composition of Porta Palazzo and Lingotto areas. 
Population classified by geographic origin.  

Origin Lingotto Porta Palazzo Total 

Italian 18.341  11.926  30.267  
European (UE) 1.107  4.213  5.320  

Extra UE 911  1.576  2.487  
Total 20.359  17.715  38.074  
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TABLE 3 – Demographic composition of Porta Palazzo and Lingotto areas. 
Population classified by age class. 

Age class Lingotto Porta Palazzo Total 

0 – 14  2.223   2.249   4.472  
15 – 29  2.556   2.548   5.104  
30 – 44  4.422   4.768   9.190  
45 – 59  4.111   3.453   7.564  
60 – 75  4.092   2.670   6.762  

> 75  2.955   2.027   4.982  
Total  20.359   17.715   38.074  

 
FIGURE 4. – Age Pyramid of Lingotto and Porta Palazzo areas. 
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5.1 Multivariate analysis of the Space Syntax output 

As stated earlier, it is quite rare to be able to give an apri-
oristic specification of the best factorial rotation. In this work some 
of the most used and effective rotations had been used (Varimax, 
Quartimax, Biquartimax  and Equamax all in the raw and normal-
ized versions). The rotations which gave the best results in terms of 
interpretation of the factor were Varimax and Biquartimax, both 
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normalized. The resulting factor loadings for the normalized Vari-
max rotation are shown in Table 2.  

It may be relevant to outline that these computations had 
been done separately on all the axes of interest (the 130 axes of 
Lingotto and 148 of Porta Palazzo) and therefore no inferential 
procedure is required at this step as this is a census study. Moreo-
ver, as the Space Syntax measurements are done on the global city 
map the analysis has been performed on a unique dataset.  

Although a number of variables are well identified with one 
single factor, some are slightly correlated with one or both the other 
two factors (Integration, Mean Depth and Node Count R2). The 
three factors identified represent approximately the 91% of the 
overall variability. The two solutions are quite similar and analyz-
ing the loadings (Table 2), the interpretations given to the Factors 
are the following: 
 

Factor 1 – (Permeability) Identifies long, well connected 
and strategically important axes that roughly constitute the radial 
structure of paths connecting the centre with the periphery of the 
system. Choice contributes significantly to the factor, making it a 
measure of what in graph theory is called betweennes. Because of 
the relevance of Connectivity and Control, the factor gets higher in 
axes with many connections and with more connections than their 
immediate neighbours. These elements together mean that the fac-
tor also represents the degree of permeability allowed by the axes 
to crossing paths. The factor is relatively stable from one case study 
to the other, with only Choice R2 remarkably changing its factor 
loading. 

Factor 2 – (Hierarchical subordination) It inversely relates 
Mean Depth R2 and Controllability, which is not surprising since 
the former is a component in the function to calculate the latter. 
Because of that, the factor can be safely assumed to represent little 
else than controllability itself, which in itself shows little or no rela-
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tion with the rest of Space Syntax Analysis measures. This factor is 
consistent in both case studies. 

Factor 3 – (Centrality) This factor changes from one case 
study to the other. In the Porta Palazzo case study, the connection 
between Integration and Mean Depth is again somewhat expected 
since one is calculated through the other. Remarkably, however, In-
tegration do not appear significant in factor 1 together with Choice, 
despite the fact that both Integration and Choice are Centrality 
measures. We can conclude that Integration (which in general 
graph theory would be considered a way to represent closeness) 
and Choice are different and non-redundant ways to represent Cen-
trality. In the Lingotto case study, the behaviour of Choice R2 di-
verges from that of Choice, with the former being the main deter-
minant of Factor 3. What was Factor 3 in Porta Palazzo case study 
is pretty much half way between Factor 1 and Factor 3. 

 
TABLE 2. – Factor Loading for the Varimax Normalized rotation. Shaded 

loadings whose absolute value is bigger than 0.65 
Quarter Porta Palazzo Lingotto 

Factor 1 2 3 1 2 3 

Choice 0,90 0,03 0,26 0,92 0,13 0,17 

Choice R2 0,92 -0,05 -0,01 0,18 -0,02 0,95 

Connectivity 0,86 0,07 0,48 0,96 0,14 0,21 

Control 0,89 0,12 0,38 0,96 0,16 0,09 

Controllability 0,08 0,98 -0,18 0,19 0,96 -0,06 

Integration 0,43 -0,41 0,79 0,62 -0,42 0,59 

Line Length 0,87 0,04 0,45 0,93 0,11 0,30 

Mean Depth -0,32 0,46 -0,80 -0,57 0,50 -0,54 

Mean Depth R2 -0,05 -0,97 0,21 -0,12 -0,98 0,09 

Node Count R2 0,72 -0,22 0,63 0,75 -0,25 0,57 

Expl.Var 4,77 2,35 2,36 4,91 2,43 2,04 

Prp.Totl 0,48 0,24 0,24 0,49 0,24 0,20 
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5.2 Clustering by axes using the k-means algorithm. 

The clustering of axes into groups is done using the ap-
proach of classification of subjects by employing the usual k-mean 
clustering technique to the composite variables obtained through 
the rotation in factor analysis (Takeuchi et al. 1982). The procedure 
follows a simple and easy way to classify a given data set through a 
pre-specified number of clusters k, therefore the problem of deter-
mining “the right number of clusters is generally a difficult task of 
considerable interest (Ming-Tso Chiang and Mirkin, 2007). Alt-
hough there is not a unique solution to this problem, most of the 
authors (CIT) suggest an “heuristic” approach as the one used for 
the best factor rotation principle. The best results in classification 
and attribution of meaning to these clusters has been obtained using 
four groups. In Table 4 the group means and standard deviations 
for all the variables and factors analyzed are shown. It is quite evi-
dent the difference, in means, among the area, i.e. Lingotto and 
Porta Palazzo are urbanistically very different. A three dimensional 
representation of the axes is shown in Figure 5. As a matter of fact, 
this procedure clearly distinguishes the four main axes of the two 
areas: Via Milano, Corso Giulio Cesare, Corso Regina Margherita 
(in Porta Palazzo area), Corso Unione Sovietica and Corso Duca 
degli Abruzzi (in Lingotto area). 
 
6. The Genoa case 

The city of Genoa is an important seaport in northern Italy 
inhabited by about 610,000 people with an urban area population of 
about 900,000 units. Before 1100 Genoa emerged as an independ-
ent city-state becoming the most influent city in the Tyrrhenian 
Sea. Being the inland area of Genoa principally hilly, the urban 
structure developed over the centuries around the Old Harbour 
without an evident and precise structure. At the present day, the 
city of Genoa covers an area of approximately 243 square kilome- 
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TABLE 4. – Group means for all the variables (Turin Case). 

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

Choice 434,1           1.085,3        11.576,8      22.650,2      1.216,1        2.524,0        191.478,0    209.299,5    
Choice R2 0,9               1,2               12,4             7,8               3,4               4,0               48,8             49,9             
Connectivity 3,4               2,1               7,5               3,3               3,5               1,9               32,4             21,7             
Control 0,8               0,4               1,5               1,0               0,6               0,4               7,2               6,1               
Controllability 0,2               0,0               0,1               0,0               0,1               0,0               0,2               0,1               
Integration 1,4               0,1               1,7               0,1               1,5               0,1               1,9               0,2               
Line Length 255,5           270,3           739,0           498,1           256,8           178,9           2.865,0        1.849,7        

Mean Depth 7,8               0,7               6,3               0,3               7,3               0,2               6,0               0,5               
Mean Depth R2 1,7               0,0               1,9               0,0               1,9               0,0               1,8               0,1               
Node Count R2 13,7             7,3               86,3             32,0             28,9             12,8             163,2           81,0             

Valid N

FACTO R 1 -0,5 0,2 0,2 0,3 -0,3 0,1 2,0 2,8

FACTO R 2 1,6 0,6 -0,9 0,5 -0,2 0,4 0,8 0,4

FACTO R 3 -0,2 0,2 0,3 0,4 -0,4 0,3 1,6 2,8

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

Choice 802,6           1.520,9        24.281,8      50.460,6      876,0           1.242,8        1.245.201,0 145.788,4    
Choice R2 4,3               5,1               24,7             51,8             2,7               3,3               801,0           842,9           
Connectivity 4,3               2,4               10,1             9,6               3,4               1,9               71,5             2,1               
Control 1,0               0,5               1,8               2,1               0,7               0,4               14,4             2,9               
Controllability 0,3               0,1               0,1               0,0               0,1               0,0               0,2               0,0               
Integration 1,7               0,1               2,0               0,1               1,7               0,1               2,6               0,0               
Line Length 152,0           146,3           625,2           661,1           160,7           120,8           5.992,1        508,3           

Mean Depth 6,5               0,3               5,6               0,3               6,3               0,4               4,6               0,1               
Mean Depth R2 1,7               0,1               1,9               0,0               1,9               0,1               1,8               0,0               
Node Count R2 16,1             9,6               101,6           52,9             30,8             17,7             421,0           46,7             

Valid N

FACTO R 1 -0,2 0,2 -0,2 0,5 -0,1 0,2 8,3 2,1

FACTO R 2 1,5 0,7 -0,5 0,6 -0,3 0,6 0,4 0,2

FACTO R 3 -0,3 0,5 0,7 0,7 -0,8 0,6 -0,3 1,5

1 2 3 4

1 2 3 4

PO RTA 

PALAZZO

LINGO TTO

30 23819

5271610

 
 
 

tres (151 sq miles) between the Ligurian Sea and the Apennine 
Mountains. The city develops on the coast for about 30 kilometres 
(18 miles) from east to west and for 10 kilometres (6 miles) from 
the coast to the north along the valleys Polcevera and Bisagno. 

Just like in the Turin case, the areas of interest Maddalena 
(MD), S. Lorenzo (SL) and Sampierdarena (SP) are very different 
(Figure 6). Maddalena and S. Lorenzo are the two main areas of the 
Old Historical Centre and represent a big part of the medieval town 
made of narrow and winding allies (the so-called vicoli). Maddale-
na is one of the quarters which were constituting the original histor-
ical centre in Genoa and it is basically extended around the homon-
ymous street. A bundle of narrow and streets compose this area 
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which can be assumed to be a stand-alone medieval suburb inside 
the city of Genoa. S. Lorenzo is another quarter in the Historic 
Centre of Genoa. Its structure has been deeply influenced over the 
centuries by the close presence of the port and many of the narrow 
streets which compose it are directed towards the sea. In the centre 
of this area lies a wide (in comparison with the contiguous streets) 
pedestrian road going from the Old Port to the old site of the Doge 
(the “Sire” of Genoa) passing on the right side of the S. Lorenzo 
Cathedral. Today S. Lorenzo is very close to the modern Genoa 
downtown. 

 
FIGURE 6. – Centro Storico (left) and Sampierdarena (right) areas. 

        
 

Sampierdarena was a fishermen village which has been an-
nexed to Genoa in 1926. In the end of the 19th century, the availa-
bility of water from the Polcevera torrent supported the establish-
ment of many factories in the area and Sampierdarena became one 
of the most important industrial areas in Italy. The industrial voca-
tion of the area, although still visible, in now less relevant and the 
coexistence of a part of the harbour with both the highway and rail-
road junctions supported the development of intermodal transporta-
tion infrastructures. 
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Maddalena is inhabited by 3.896 residents, S. Lorenzo by 
4.457 residents and Sampierdarena by 10.849. The demographic 
composition of the three populations, as we can see in Table 4, Ta-
ble 5 and Figure 5, presents different distributions. The Maddalena 
area is characterised by an higher percentage of non-Italian resi-
dents corresponding to about 21% of the total population (S. Lo-
renzo presents 17% and Sampierdarena 18,6% of non-Italian resi-
dents). The age distribution of the three areas of interest is very dif-
ferent. The Maddalena area is characterised by an higher percent-
age of young people, only 22% of the residents are sixty or more. 
This percentage increase in S. Lorenzo area (26%) and more over 
in Sampierdarena area (33%). 

The age pyramids of the three areas highlight the previous 
considerations.  The different age percentage distribution is well 
rendered. The age percentage distribution of the Sampierdarena ar-
ea is clearly related to an ageing population. This is not the same 
for the two quarters of the historical center of Genoa, Maddalena 
and S. Lorenzo. In fact, observing the two population pyramid 
(Figure 5), we can see two  younger populations. 
 

TABLE 4 – Demographic composition of Maddalena, S. Lorenzo and 
Sampierdarena areas. Population classified by geographic origin.  

Origin Maddalena S. Lorenzo Sampierdarena Total 

Italian 3.083 3.700 8.835 15.618 
European (UE) 720 658 1.857 3.235 

Extra UE 93 99 157 349 
Total 3.896 4.457 10.849 19.202 
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TABLE 5 – Demographic composition of Maddalena, S. Lorenzo and 
Sampierdarena areas. Population classified by age class. 

Age class Maddalena S. Lorenzo Sampierdarena Total 

0 – 14  403   459   1.119   1.981  
15 – 29  514   539   1.444   2.497  
30 – 44  1.165   1.270   2.377   4.812  
45 – 59  944   1.052   2.349   4.345  
60 – 75  562   722   2.060   3.344  

> 75  308   415   1.500   2.223  
Total  3.896   4.457   10.849   19.202  

 
FIGURE 5. – Age Pyramid of Maddalena, San Lorenzo and Sampierdarena 

areas. 
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6.1 Multivariate analysis of the Space Syntax output. 

The multivariate analysis of the 290 axes (Fiumara: 95; 
Maddalena: 104; S. Lorenzo: 91) gave results, summarized in Ta-
ble 5, which can be considered comparable with the ones computed 
for the Turin case (Table 2) although some differences are present. 
The general meaning of the factors for the Genoa case can be as-
sumed to be very similar to the Turin case. Sampierdarena is the 
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quarter which for urban layout is the most similar to Porta Palazzo 
or Lingotto and the fact that the composition of the three factor is 
exactly the same of Turin seems to be a validation of the meanings 
given to the loading shown in Table 2. It is is interesting to see how 
the choice variable is not firmly constituting any factor for the two 
area in the “Centro Storico” of Genoa.  

 
Factor 1 – (Permeability) Given the number of variables re-

curring from the Factor 1 identified in the Torino case studies, we 
can argue that it mainly conveys the same meaning. However, 
while in the Sampierdarena case study we have an orthogonal grid, 
much like those found in Torino, and the Factor is correspondently 
very similar, the other case studies of Genova have an evidentely 
different kind of urban grid and the Factor itself looks to be influ-
enced by this. Both in the Maddalena case study and, less evident-
ly, in the San Lorenzo case study, Choice is less connected with 
factor 1 and more closely related to Integration. 

 
Factor 2 – (Hierarchical subordination) There is no signifi-

cant difference in this factor from what we found in the Torino case 
studies. 

Factor 3 – (Centrality) Except for the different behaviour of 
Choice, it closely resembles the Factor 3 we found in the Porta 
Palazzo case study and mainly consists of Integration and its com-
ponent Mean Depth.  

 
6.2 Clustering by axes using the k-means algorithm. 

Using the three identified factors for clustering the axes into 
four categories using the k-means algorithm produced the results 
shown in Table 6. The labelling 1-4 for the groups has been done in 
order to identify the corresponding group category with the Turin 
case. Generally it can be stated that the group means for each factor 
and for each variable show a similar pattern to that we found in To-
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rino.  A cluster includes the main roads of each area, where Factor 
1 and Factor 3 are both much above the average. A second cluster 
is at the other end of the spectrum, with the lowest or next to lowest 
averages for Factor 1 and Factor 3. The other two clusters show 
subtler differences, with a high average of Factor 1 and a low aver-
age of Factor 3 or vice versa. 

 
TABLE 5. – Factor Loading for the Varimax Normalized rotation for the 

three areas of interest in Genoa. Loadings whose absolute value is bigger than 
0.65 are shaded. 

Quarter Maddalena S. Lorenzo Sampierdarena 

Factor 1 2 3 1 2 3 1 2 3 

Choice 0,13 0,24 0,71 0,40 0,04 0,50 0,72 -0,15 0,08 

Choice R2 0,90 0,11 0,03 0,84 0,12 0,22 0,84 0,21 0,14 

Connectivity 0,82 0,28 0,45 0,94 0,08 0,26 0,94 0,19 0,19 

Control 0,82 0,42 0,30 0,88 0,36 0,12 0,90 0,35 0,09 

Controllability 0,20 0,97 -0,05 0,16 0,97 -0,14 0,16 0,97 -0,11 

Integration 0,23 -0,21 0,89 0,26 -0,23 0,92 0,20 -0,14 0,97 

Line Length 0,66 0,05 0,64 0,87 0,00 0,33 0,89 0,19 0,11 

Mean Depth -0,23 0,22 -0,88 -0,25 0,22 -0,92 -0,18 0,14 -0,97 

Mean Depth R2 -0,12 -0,97 0,09 -0,07 -0,98 0,17 -0,08 -0,97 0,17 

Node Count R2 0,68 -0,34 0,56 0,77 -0,42 0,39 0,84 -0,39 0,25 

Expl.Var 3,25 2,42 3,11 4,04 2,32 2,39 4,53 2,34 2,07 

Prp.Totl 0,33 0,24 0,31 0,40 0,23 0,24 0,45 0,23 0,21 

 
 

7. Comparing the multivariate analyses for the two cases 
With the differences between the factor loadings in Torino 

and Genova in mind, we can attempt an interpretation of what was 
found. 
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First of all, the interrelation between two different measures 
of centrality like Choice and Integration is a pretty complex one. 
While at times they have a direct proportionality of some sorts, 
with both being high in very important axes and both very low in a 
few marginal ones, other times they can also produce contradicting 
indications. This should be probably seen as an indication that the 
two measures are not redundant and, while trying to describe cen-
trality, they end up showing properties of space and configuration 
that are at least partially different. 

Choice, in particular, and its ambivalent relation with Factor 
1, should be regarded as a very significant insight on the mechanics 
of Space Syntax.  

Choice is a global measure that, in fact, depends on local as 
well as global properties of the grid. 

It measures the number of times a given axis stands on the 
shortest path between the couples of every other axis in the grid 

In an axial map with a large enough number of axes, most 
of them will only represent a shortest path between the few depar-
tures and destinations that stand very close to the axis itself. The 
likelihood of long, trans-urban paths actually going through each 
axis will, on the other hand, be pretty low. 

This means that for most of the axes in a large axial map, a 
big part of their Choice value (if not the entirety) will come from 
couples that are either directly connected to it or stand at 1, 2 syn-
tactic steps of distance. 

In other words, the higher the connectivity, the higher the 
chance that this local component of Choice will be above zero.  

However, a high connectivity is not, per se, a sign of prox-
imity to the centre of the system, and consequently there is no 
guarantee that a value of Choice that is built on short, local paths, 
will be in any way associated with a proportional value of Integra-
tion.  
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TABLE 6. – Group means for all the variables. 

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

Choice 96.895,2 309.231,3 466.221,7 1.340.761,5 170.304,5 634.913,6 4.888.092,3 3.695.449,9 

Choice R2 3,7          6,8            5,6            8,6               1,8            2,3            83,3             58,6             

Connectivity 3,8          2,3            4,0            2,2               2,7            1,2            21,3             5,6               

Control 1,3          0,8            0,8            0,7               0,7            0,4            7,2               2,8               

Control labil ity 0,3          0,1            0,2            0,1               0,2            0,1            0,3               0,1               

Integration 0,4          0,0            0,4            0,0               0,4            0,0            0,4               0,0               

Line Length 161,5      242,4        144,1        108,4           100,3        55,5          998,3           240,2           

Mean Depth 26,0        1,0            24,9          0,6               27,6          0,7            24,7             1,5               

Mean Depth R2 1,6          0,1            1,8            0,1               1,8            0,1            1,7               0,1               

Node Count R2 11,1        5,7            27,1          13,6             17,5          12,0          66,7             8,4               

FACTO R1 -0,4 0,4 -0,2 0,5 -0,1 0,3 3,4 0,8

FACTO R2 1,1 0,5 -0,6 0,5 -0,4 0,9 0,5 1,2

FACTO R3 0,0 0,7 0,6 0,4 -1,5 0,6 0,2 1,3

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

Choice 29.676,8 103.858,2 5.343,8     8.629,1        189.534,3 641.018,1 5.066.149,8 6.326.783,1 

Choice R2 7,3          10,1          3,8            5,7               6,3            9,1            71,2             86,0             

Connectivity 4,8          2,5            3,4            1,6               4,7            1,9            16,0             4,4               

Control 1,3          0,6            0,7            0,4               0,9            0,5            3,8               1,3               

Control labil ity 0,3          0,0            0,2            0,0               0,2            0,0            0,3               0,0               

Integration 0,5          0,0            0,5            0,0               0,5            0,0            0,5               0,0               

Line Length 62,9        33,0          50,7          18,9             104,8        45,9          278,0           90,8             

Mean Depth 22,7        0,7            23,0          0,4               21,7          0,4            21,1             0,7               

Mean Depth R2 1,7          0,1            1,8            0,0               1,8            0,0            1,7               0,0               

Node Count R2 15,6        7,7            17,9          7,2               31,2          8,8            51,8             9,8               

FACTO R1 -0,3 0,6 -0,6 0,4 0,6 0,6 1,9 2,7

FACTO R2 1,2 0,5 -0,2 0,5 -0,9 0,6 1,1 0,9

FACTO R3 -0,2 0,7 -0,2 0,5 0,0 0,5 2,6 3,0

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

Choice 15.903,2 25.843,5   127.505,8 558.933,2    16.406,9   23.116,3   3.857.649,0 5.119.834,8 

Choice R2 4,6          4,7            4,1            4,1               4,5            5,9            35,8             12,6             

Connectivity 3,9          1,7            4,1            1,7               4,3            2,5            12,8             3,5               

Control 1,0          0,4            0,7            0,3               0,9            0,6            2,6               0,9               

Control labil ity 0,3          0,0            0,1            0,0               0,2            0,0            0,2               0,1               

Integration 0,5          0,0            0,5            0,0               0,5            0,0            0,5               0,0               

Line Length 62,1        38,2          76,7          39,7             67,2          38,0          246,9           99,6             

Mean Depth 22,6        0,6            21,8          0,5               23,5          0,4            21,2             0,7               

Mean Depth R2 1,7          0,1            1,8            0,0               1,8            0,1            1,8               0,1               

Node Count R2 14,2        5,9            28,7          12,7             22,5          9,9            55,0             11,0             

FACTO R1 -0,4 0,5 -0,3 0,5 0,3 0,7 2,5 1,0

FACTO R2 1,0 0,6 -0,8 0,5 -0,5 0,6 0,2 0,8

FACTO R3 0,0 0,6 0,5 0,6 -1,5 0,3 0,9 1,5

33 35 15 8

28 36 35 5

S. LORENZO
1 2 3 4

26 44 19 6

MADDALENA
1 2 3 4

FIUMARA
1 2 3 4
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Such uncertainty accounts for Integration having a factor 

loading on Factor 1 in Torino between 0.4 and 0.6. 
In a regular, almost orthogonal grid, Choice is mainly a 

product of Connectivity (except for a few, very important axes) and 
may or may not be related to Integration. 

A totally different situation comes when the grid is less or-
thogonal, more fragmented and dispersed. 

In such a case, short axes with few connections and margin-
al levels of local Choice, can actually be the sole connection (or 
one of the few) between different parts of the graph. 

When that happens, Choice loses its relation with Connec-
tivity and extremely increases that with Integration. 

Unsurprisingly, this is what happens in the two case studies 
from the historical city centre of Genoa, which fits the image of 
fragmented urban grid pretty well.    

 
 
8. Conclusions and further work 

Most of the international analyses and surveys on crime are 
not taking into account the key role of the urban layout. Space Syn-
tax offers a quantitative and objective way to analyze the structure 
of a city measuring a set of variables whose usage for the definition 
of the sampling designs seems to be quite straight. 

The results obtained in the Turin case show that the factor 
analysis for the space syntax variables gives clearly interpretable 
composite variables. Moreover, the k-means clustering technique 
distinguishes four groups of axes structurally different. Although 
this work is only a part of the research project described in para-
graph 1 it analyses one of its key points. Many are the possible evo-
lutions of the present work: 
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• analysis of the space syntax variables for other areas and com-
parison of the factor loadings and meanings; 

• usage of other multivariate approaches for the composite varia-
bles definitions (e.g. Multidimensional Scaling) and comparison 
of the corresponding results with the ones given by the factor 
analysis; 

• evaluation of Space Syntax as a predictor of pedestrian flow 
(amount and composition) under different conditions and 
through different indicators; 

• measurement of other urban (e.g. height of buildings, number of 
buildings, number of building main doors, number of abandoned 
buildings), social (e.g. nationality and age composition per axis) 
and economic variables (number of shops, number of shop win-
dows per axis, number of security cameras) in order to evaluate 
if the axis clustering procedure based on the space syntax meas-
urements is effective also for other phenomena; 

• study of the perception of safety for people living, working (or 
both) in different axis groups: how the different structure of the 
axes may influence this perception; 

• comparison of the perception of safety between people leaving 
or working in the areas of interest and pedestrians who are simp-
ly crossing axes. 

 
All these topics require a strict definition of the urban axis 

and a clustering principle which have been herein discussed. 
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